Elliott An ATES COMPANY	EMC Test Data
Client: Summit Data Communications	Job Number: J76040
Model: SDC-MCF10G	T-Log Number: T76236
	Account Manager: Christine Krebil
Contact: Ron Seide	

Radio Test Report R76253

For The

Summit Data Communications

Model

SDC-MCF10G

Revision History

Rev#	Made By	Date	Comments	
1.0	Mark Hill	31-Jul-09	Initial Release	
2.0	Mark Briggs	11-Aug-09	Inserted additional photographs of the top and bottom sides of the circuit board and resized the existing photographs to better show the components. Added information about the rf shield being soldered in place to prevent access to rf circuitry. Separated 802.11b mode and 802.11g mode data for WW band. Added more detailed information regarding which measurements were made at normal, high and low voltages and which were made only at normal voltage. Added more plots so that there is a plot for each channel. Changed calculation for nominal output power. Included the actual value for the highest spurious emission and not just the margin in the summary tables.	
3.0	Mark Briggs	16-Aug-09	Added eirp values into the summary sheet and test data sheets for each operating mode.	

Page 1 of 48 Aug 16 2009

	Elliott An WIES' company	Product In	formation
Client:	Summit Data Communications	Job Number:	J76040
Model	SDC-MCF10G	T-Log Number:	T76236
wodei.	SDC-NICE IUG	Account Manager:	Christine Krebil
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Ron Seide

Product Information

Product Information

The Summit Data Communications model SDC-MCF10G and number is a 2.4GHz 802.11bg radio module that provides a wireless interface for a host devices such as a hand-held PC or PDA. The device was tested installed into a HP iPAQ PDA. The serial number of the sample tested was 001723086B4F (MAC Address)

EUT Software

Summit Client Utility (SCU) - Driver v2.01.17, SCU v.2.01.12 Summit Regulatory Utility (SRU) - v2.1.12

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Test Environment

Temperature: 15-30 °C Rel. Humidity: 20-75 % Pressure: 86-106 kPa

Product Power Supply - Determination of Voltage Regulator

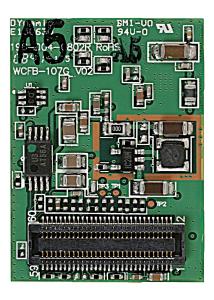
The device is designed to be powered from a nominal voltage of:

3.3 Vdc

Page 2 of 48 Aug 16 2009

Product Information Client: Summit Data Communications Model: SDC-MCF10G Standard: Japanese Radio Law - Item 19 of Article 12 Product Information Job Number: J76040 T-Log Number: T76236 Account Manager: Christine Krebil Contact: Ron Seide

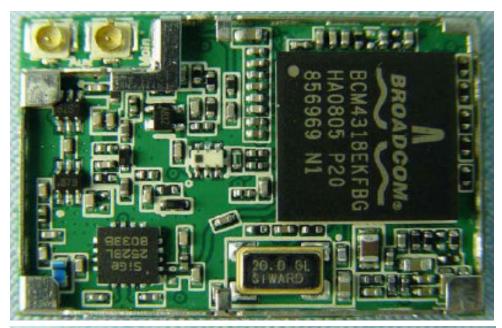
RF Accessibility (Article 2, Item (19) Notice 88 Appendix 43, 44, 45)

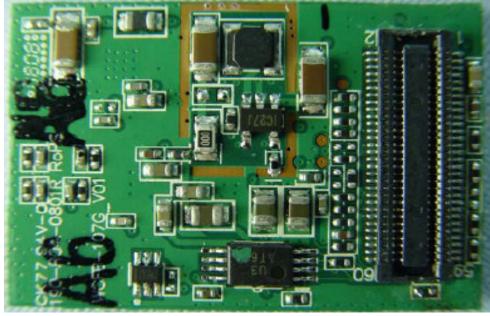

Requirement

The EUT shall be constructed in such a way that sensitive RF parts, (like modulation and oscillator parts) cannot be reached easily by the user. These parts shall be covered by soldered metal caps or glue or by other mechanical covers. If the covers are fixed with screws, these shall be not the common type(s) like a Phillips, but special versions like Torx, so that the user cannot open the device with common tools.

Results

The outer enclosure covers all of the rf sensitive circuitry with the exception of the antenna connectors. The outer case is not designed to be removed (see first set of pictures below) because the rf shield is soldered into place to prevent its removal..





Page 3 of 48 Aug 16 2009

Client: Summit Data Communications Model: SDC-MCF10G Standard: Japanese Radio Law - Item 19 of Article 12 Product Information Job Number: J76040 T-Log Number: T76236 Account Manager: Christine Krebil Contact: Ron Seide

Additional photos showing the component side of the circuit board with the shield removed and the bottom side of the board showing the 60pin connector used to interface to the host system.

Page 4 of 48 Aug 16 2009

Elliott An AZAS Company		Radio Test Data - Antenna Gain
Client:	Summit Data Communications	Job Number: J76040
Model:	SDC-MCF10G	T-Log Number: T76236
	SDC-MCF 10G	Account Manager: Christine Krebil
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact: Ron Seide

RADIO EQUIPMENT USED FOR 2.4 GHz BAND WIDE-BAND LOW-POWER DATA COMMUNICATIONS SYSTEM (Radio station using 2400 - 2483.5 MHz)

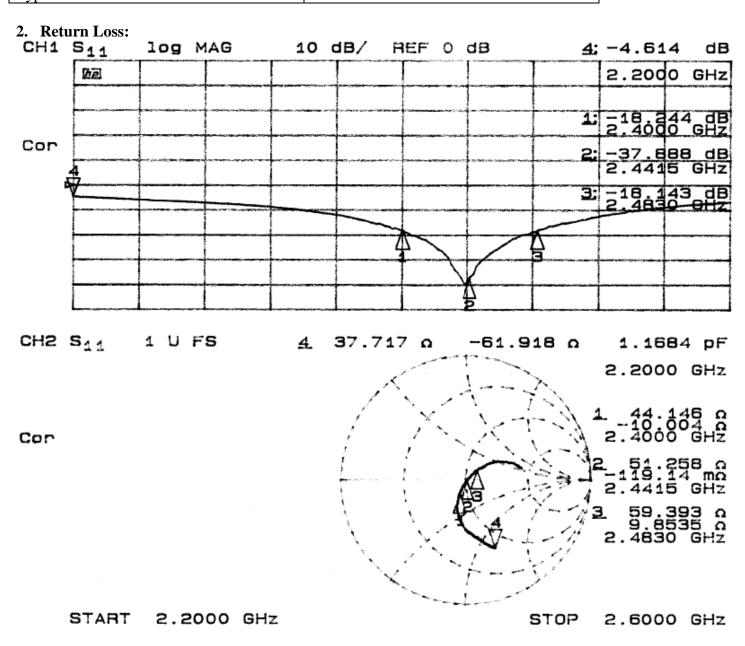
Antenna Gain(s)

Antenna	Mode	Requirement	Antenna Gain	Result
0dBi PCB Omnidirectional Antenna	802.11b and 802.11g (2400-2483.5MHz)	Omni-directional antennas: Maximum eirp is 12.15dBm/MHz. Based on the highest measured g output power of 3.1mW/MHz (4.91 dBm/MHz) the maximum allowed omni-directional gain is 7.24dBi. See other data sheets for eiro calculations.		Pass
0dBi PCB Omnidirectional Antenna	eirp calculations. Omni-directional antennas: Maximum eirp is 12.15dBm/MHz. Based on the highest measured output power of 1.8mW/MHz (2.55 dBm/MHz) the maximum allowed omni-directional gain is 9.60dBi. See other data sheets for eirp calculations.		0 dBi	Pass

Antenna Gain

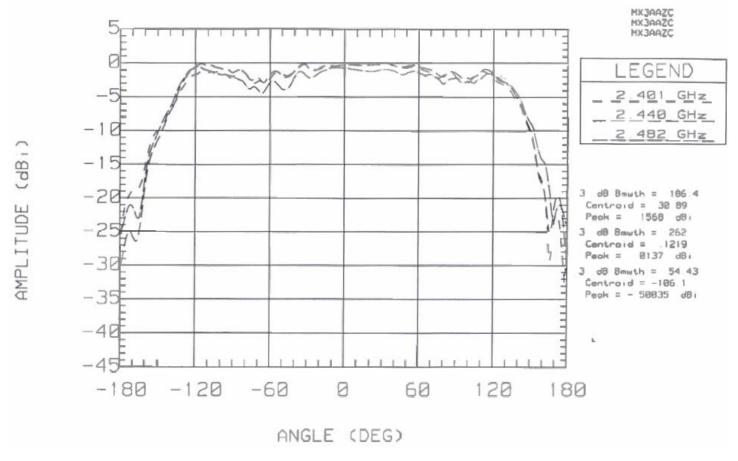
Refer to attached data sheets showing antenna gain and pattern for each antenna

0dBi PCB Omnidirectional Antenna

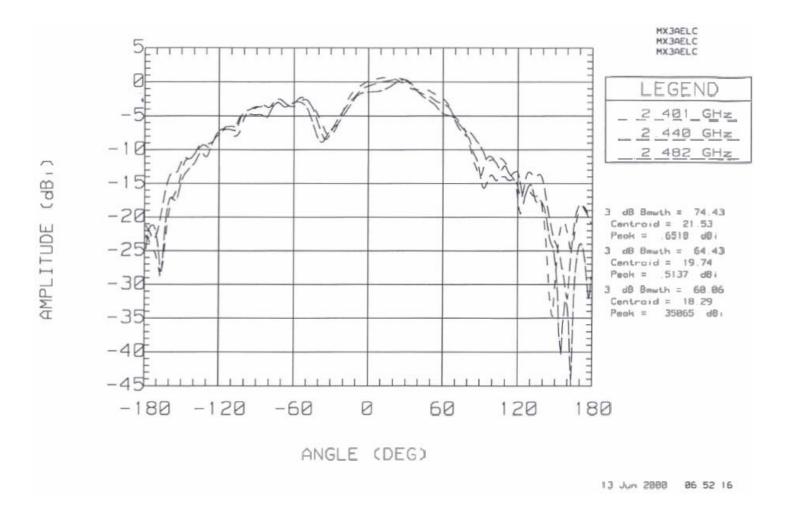

Band Gain 2.4 - 2.5 GHz 0 dBi

Page 5 of 48 Aug 16 2009

0dBi PCB Omnidirectional Antenna


1. Specifications:

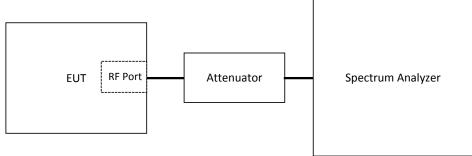
Operating Frequency	2.4 GHz to 2.483 GHz
Impedance	50 Ω
Typical Gain	0 dBi



3. Radiation Patterns:

3.1 Azimuth:

3.2 Elevation:


E E	Eliott An AZAT company	Transmitter Characteristics Test Data
	Summit Data Communications	Job Number: J76040
Model	SDC-MCF10G	T-Log Number: T76236
woder.	SDC-INCF 10G	Account Manager: Christine Krebil
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact: Ron Seide

RADIO EQUIPMENT USED FOR 2.4 GHz BAND WIDE-BAND LOW-POWER DATA COMMUNICATIONS SYSTEM (Radio station using 2400 - 2483.5 MHz)

Summary of Results

Test Performed	Mode	Requirement	Measurement	Result
Frequency Error	802.11b	50ppm or better	802.11b: 11.19 ppm	Pass
Occupied bandwidth (2400 - 2483.5MHz)	802.11b	DSSS: 500kHz < BW < 26MHz OFDM: < 38MHz	DSSS: 12.72 MHz	Pass
Spreading Rate (2400-2483.5MHz)	802.11b	5 or more	802.11b: 7.0	Pass
OFDM Carrier Spacing	802.11b	-	Not applicable	-
Spurious Emissions	802.11b	Below 2387MHz: < 2.5uW/MHz 2387 - 2400 MHz < 25uW/MHz 2483.5-2496.5MHz < 25uW/MHz (2497 - 2510 for #14) Above 2496.5 MHz: 2.5uW/MHz	0.224uW at 2700.02 MHz (10.5dB below the limit)	Pass
Antenna power 802.11b		Maximum permitted: BW < 26MHz: 10mW/MHz BW < 38MHz: 5mW/MHz Power Tolerance: -80% to +20% EIRP not to exceed 12.15dBm/MHz	Rated Power: 3.86 mW/MHz Tolerance: -39.6% to -20.4% EIRP: 4.88dBm/MHz	Pass

Test Environment

Temperature: Rel. Humidity: 86-106 kPa

15-30 °C 20-75 %

3.3 Vdc

Pressure: Nominal Supply Voltage

(provided by host device)

Duty Cycle and Transmission Cycle Time

Data Rate	Duty Cycle	Transmission cycle time
Mbs	%	ms
1	100	N/A - Continous
11	75	6.00
6	93.6	2.21
54	19.35	1.24

Page 9 of 48 Aug 16 2009

Ellio AN ANDES	tt
----------------	----

Transmitter Characteristics Test Data

Client:	Summit Data Communications	Job Number:	J76040
Model:	SDC-MCF10G	Job Number: J76040 T-Log Number: T76236 Account Manager: Christine Krebil Contact: Ron Seide	
	SDC-WCF10G	Account Manager:	Christine Krebil
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Ron Seide

Run #1: Frequency Error

Date of Test: 7/21/2009 0:00 Test Engineer: Mark Hill

Test Location: ENV Chamber

One antenna position was evaluated based on verification that changing the diversity switch position did not affect the center frequency of the cente channel at nominal voltage on the center channel.

The center frequency was measured at nominal and extreme voltage conditions. Measurements showed no change in frequency stability due to voltage extremes, all other measurements taken at nominal voltage.

For CCK modulation with no provision for operating with an unmodulated signal measurements were made on amodulated signal at the top, center and bottom channels. The operating frequency was determined by measuring the frequency at the null created at the center of the signal. The analyzer was configured with, RB=10kHz, VB=1kHz, peak detector and max hold, as this gave the cleanest signal.

Nominal Frequency (MHz) - 802.11b						
Low Channel 2412.0	Low Channel 2412.0 Ce			High Channel 2472.0		
	Measured Frequen	cy (MHz)		Frequ	iency Error	(ppm)
Voltage	Nominal -10%	Nominal	Nominal + 10%			
Voltage	3.0 V	3.3 V	3.6 V	3.0 V	3.3 V	3.6 V
Low Channel		2411.973000			11.19	
Center Channel	2436.974000	2436.974000	2436.974000	10.67	10.67	10.67
Center Channel (Aux Port)		2436.976000			9.85	
High Channel		2471.976000			9.71	

Requirement (ppm): 50.0 Requirement (ppm): 50.0

All testing performed at 1Mbs for 802.11b (CCK) and 6Mbs for 802.11g (OFDM)

Unless otherwise noted, TX Diversity switch was set to main only. Testing was performed on the Main connector

Page 10 of 48 Aug 16 2009

Elliott

Transmitter Characteristics Test Data

An DCZES company_		
Client: Summit Data Communications	Job Number:	J76040
Model: SDC-MCF10G	T-Log Number:	T76236
Model. SDC-MCF10G	Account Manager:	Christine Krebil
Standard: Japanese Radio Law - Item 19 of Article 12	Contact:	Ron Seide

Run #2: Occupied bandwidth and spreading bandwidth

Date of Test: 7/22/2009 0:00 Test Location: ENV Chamber Test Engineer: Mark Hill

One antenna position was evaluated based on verification that changing the diversity switch position did not affect the occupied bandwidth of the center channel at nominal voltage.

The bandwidth was measured on the center channel at the lowest data rate at nominal and high and low voltages. As the bandwidth remained constant with input voltage all other channels and data rates were measured only at nominal voltage.

The occupied bandwidth was measured with the spectrum analyzer configured according to the table below. The occupied bandwidth was determined from the 99% power bandwidth by determining the highest and lowest frequencies at which 99.5% of the power was captured and then subtracting the two numbers. the calculation was done by either the analyzer directly or via the software used to capture the plot. One plot for each mode tested is provided for reference.

The spreading bandwidth was measured with the spectrum analyzer configured according to the table below. The spreading bandwidth was the 90% powe bandwidth determined by the highest and lowest frequencies at which 95% of the power was captured and then subtracting the two numbers. This calculation was done by either the analyzer directly or via the software used to capture the plot. One plot for each mode tested is provided for reference.

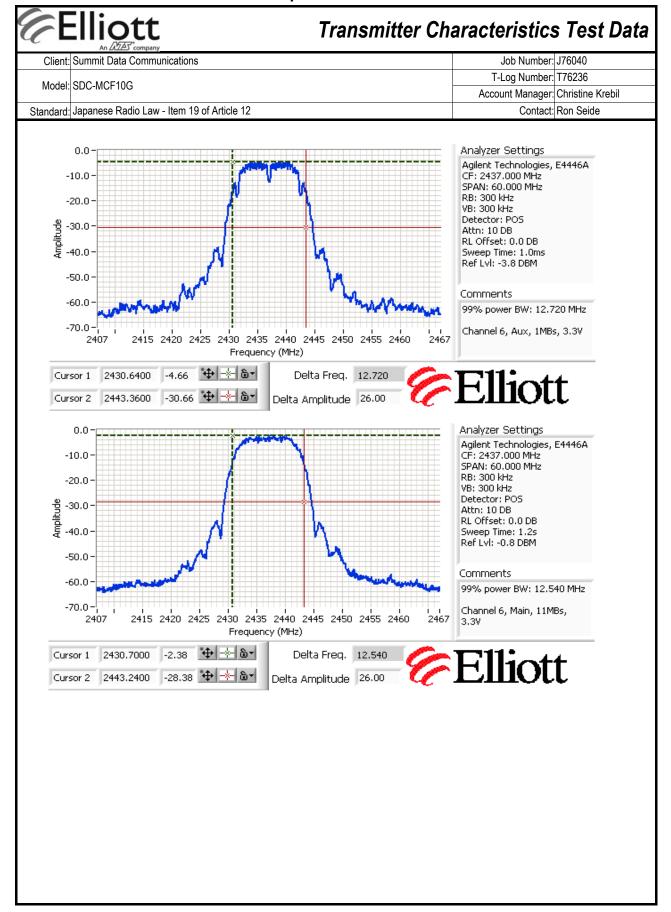
Instrument Settings and Test Requirements							
Modulation Type			Analyze	Bandwidth Requirement			
wodulation Type	Span RB VB Other		Other	Occupied	Spreading		
OFDM (e.g. 802.11gn)	76-133	≤ 1140kHz	300kHz	Sample detector, averaging (10 sweeps) ² , sweep time auto ¹	≤ 38.0MHz		
Direct Sequence (e.g. 802.11b)	52-91	≤ 780kHz	300kHz	Positive peak detector, max hold, sweep time auto ¹	≤ 26.0MHz	≥ 500 kHz	

Note 1: For burst transmissions sweep time set to ensure dwell time in each bandwidth > transmission cycle time (sweep time = transmit cycle time x span/ measurement bandwidth)

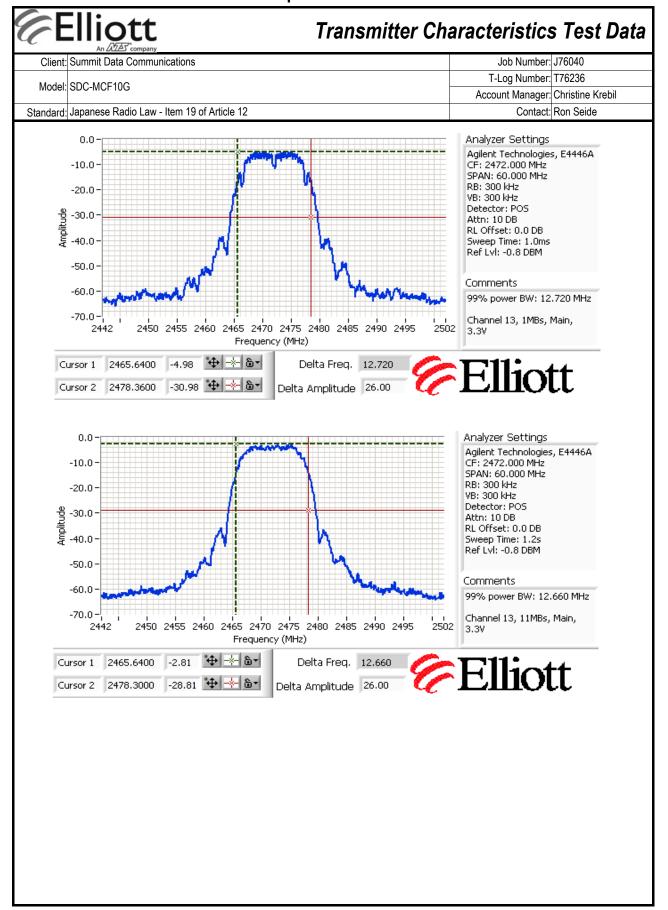
Note 2: For burst transmissions trace set for max hold and detector set to positive peal

Test Results, 802.11b Mode (Direct Sequence, 500kHz≤ bandwidth ≤ 26MHz)	Test Results	, 802.11b Mode	(Direct Sequence	e, 500kHz≤ bandwidth	≤ 26MHz)
---	--------------	----------------	------------------	----------------------	----------

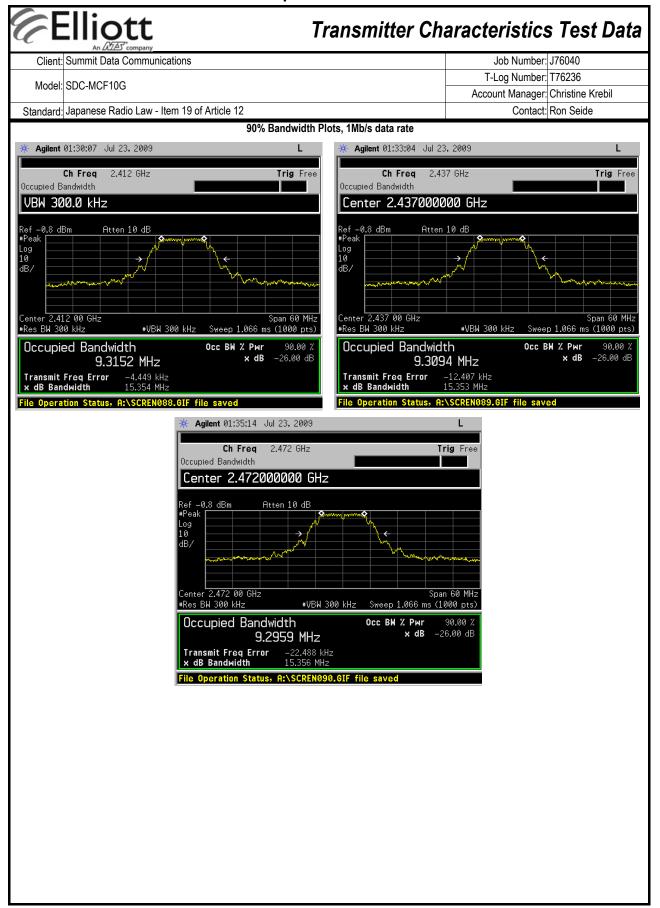
Channel	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%
Onamici	WIOGC	1 010	Ondin	Data Nato	3.0 V	3.3 V	3.6 V
1	802.11b	Main		1Mb/s		12.72	
6	802.11b	Main		1Mb/s	12.72	12.72	12.72
6	802.11b	Aux		1Mb/s		12.72	
13	802.11b	Main		1Mb/s		12.72	
1	802.11b	Main		11Mb/s		12.60	
6	802.11b	Main		11Mb/s		12.54	
6	802.11b	Aux		11Mb/s		12.54	
13	802.11b	Main		11Mb/s		12.66	

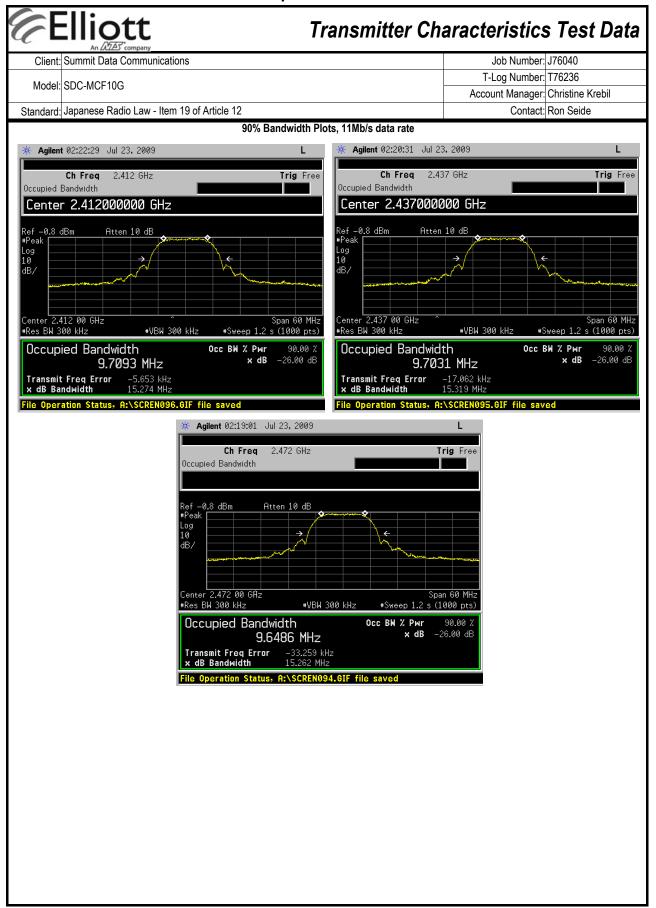

Test Results, 802.11b Mode (Direct Sequence, 500kHz ≤ bandwidth ≤ 26MHz) - 90% Pwr Bandwidth

						,	
Channel	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%
Channel	Wode	FUIL	Citalii	Dala Nale	3.0 V	3.3 V	3.6 V
1	802.11b	Main		1Mb/s		9.315	
6	802.11b	Main		1Mb/s		9.309	
13	802.11b	Main		1Mb/s		9.296	
1	802.11b	Main		11Mb/s		9.709	
6	802.11b	Main		11Mb/s		9.703	
13	802.11b	Main		11Mb/s		9.649	


Page 11 of 48 Aug 16 2009

Transmitter Characteristics Test Data Job Number: J76040 Client: Summit Data Communications T-Log Number: T76236 Model: SDC-MCF10G Account Manager: Christine Krebil Standard: Japanese Radio Law - Item 19 of Article 12 Contact: Ron Seide Spreading bandwidth Symbol rate for 802.11b is 1Msym/s for 1Mb/s and 1.375Msym/s for data rates of 5.5Mb/s and above Symbol Rate (Msym/s) Data rate 90% Signal Bandwidth Spreading rate Requirement 2400 - 2483.5 MHz 1Mb/s 1.000 9.296 9.3 5.0 2400 - 2483.5 MHz 5.5Mb/s & 11Mb/s 1.375 9.649 7.0 5.0 Occupied (99%) Bandwidth and Spreading (90%) Bandwidth - Sample Plots 802.11b mode Analyzer Settings Agilent Technologies, E4446A CF: 2412.000 MHz -10.0SPAN: 60,000 MHz RB: 300 kHz -20.0 VB: 300 kHz Detector: POS -30.0 Attn: 10 DB RL Offset: 0.0 DB -40.0 Sweep Time: 1.0ms Ref Lvl: -0.8 DBM -50.0 Comments -60.099% power BW: 12,720 MHz -70.0 Channel 1, 1MBs, Main, 3.3V 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2382 Frequency (MHz) **↔** -×- 6-Delta Freq. 12.720 Cursor 1 2405.6400 -30.48 🗘 🛧 🔊 🔻 Cursor 2 2418.3600 Delta Amplitude 26.00 Analyzer Settings Agilent Technologies, E4446A -10.0 CF: 2412,000 MHz SPAN: 60,000 MHz RB: 300 kHz -20.0 VB: 300 kHz Detector: POS -30.0 Attn: 10 DB RL Offset: 0.0 DB -40.0 Sweep Time: 1.2s Ref Lvl: -0.8 DBM -50.0 Comments -60.0 99% power BW: 12.600 MHz -70.0 Channel 1, 11MBs, Main, 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2382 3.37 Frequency (MHz) 2405.7000 -2.85 Delta Freq. 12.600 -28.85 💠 🛧 🖫 Cursor 2 2418,3000 Delta Amplitude 26.00


Page 12 of 48 Aug 16 2009


Page 13 of 48 Aug 16 2009

Page 14 of 48 Aug 16 2009

Page 15 of 48 Aug 16 2009

Page 16 of 48 Aug 16 2009

Elliott

Transmitter Characteristics Test Data

	An ZAZZES company		
Client:	Summit Data Communications	Job Number:	J76040
Model:	SDC-MCF10G	T-Log Number:	T76236
iviodei.	SDC-WCF10G	Account Manager:	Christine Krebil
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Ron Seide

Run #3: Spurious and unwanted emissions

Date of Test: 7/22/-0 Test Location: ENV Chamber Test Engineer: Mark Hill

Test Requirements

Frequency Range	Limit			
(MHz)	uW/MHz	dBm/MHz		
30 - 2387	2.5	-26.0		
2387 - 2400	25.0	-16.0		
2483.5 - 2496.5	25.0	-16.0		
2496.5 - 12500	2.5	-26.0		

The limit is for a 1MHz measurement bandwidth.

Measurement Summary - Highest emissions in each operating mode

All preliminary peak measurements were below the limit by more than 10dB.

Preliminary Measurements :

Instrument Settings: RB=VB=1MHz, Positive peak detector and maximum hold for a minimum of 10 sweeps, but until the spectrum displayed becomes stable and no new signals are observed.

The device transmits continuously so the analyzer sweep time is auto-coupled

The device transmits in a burst mode, sweep time is calculated for each band tested as shown below. The plots are composite plots of the individual frequency bands. so the analyzer sweep time is auto-coupled.

		Burst repetiti	ion frequency	1.24 ms
Frequen	icy (MHz)	Bandwic	lth (MHz)	Sweep
Start	Stop	RB	VB	
30	1000	1	1	1203 ms
1000	2483.5	1	1	1840 ms
2374	2400	1	1	32 ms
2483.5	2900	1	1	516 ms
2900	6000	1	1	3844 ms
6000	12500	1	1	8060 ms

Channels 1 through 13

Page 17 of 48 Aug 16 2009

C LIIIOLL		iott
-----------	--	------

Transmitter Characteristics Test Data

Client:	Summit Data Communications	Job Number:	J76040
Madal:	SDC-MCF10G	T-Log Number:	T76236
wodei.	SDC-WCF10G	Account Manager:	Christine Krebil
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Ron Seide

Preliminary measurement - 802.11b mode, Channels 1,6 and 13 (2400 - 2483.5MHz)

All plots generated using a 1MHz RBW

For emissions below 2387 MHz and above 2496.5 MHz the limit is 2.5uW/MHz (-26dBm/MHz)

From 2387 - 2400 MHz the limit is 25uW/MHz (-16dBm/MHz). From 2483.5 - 2496.5 MHz the limit is 25uW/MHz (-16dBm/MHz)

Antenna ports tested were both main and aux ports, worst case result is reported

Frequency	Level	Antenna			Detector	Comments	Operating	Operating
MHz	dBm	Port	Limit	Margin			Voltage	Channel
2700.020	-36.5	Main	-26.0	-10.5	Peak	Channel 13, 1Mbs	3.6	13
2699.160	-38.2	Main	-26.0	-12.2	Peak	Channel 13, 1Mbs	3.3	13
2703.886	-38.3	Main	-26.0	-12.3	Peak	Channel 13, 1Mbs	3	13
2643.080	-42.4	Main	-26.0	-16.4	Peak	Channel 1, 1Mbs	3.6	1
2664.430	-42.6	Main	-26.0	-16.6	Peak	Channel 6, 1Mbs	3.6	6
2183.870	-44.7	Main	-26.0	-18.7	Peak	Channel 1, 1Mbs	3.6	1
2208.940	-44.7	Main	-26.0	-18.7	Peak	Channel 6, 1Mbs	3.6	6
2483.930	-34.8	Main	-16.0	-18.8	Peak	Channel 13, 1Mbs	3.3	13
2248.290	-44.8	Main	-26.0	-18.8	Peak	Channel 13, 1Mbs	3.6	13
2483.930	-34.9	Main	-16.0	-18.9	Peak	Channel 13, 1Mbs	3.6	13
2387.007	-45.4	Main	-26.0	-19.4	Peak	Channel 1, 1Mbs	3.6	1
2484.144	-35.5	Main	-16.0	-19.5	Peak	Channel 13, 1Mbs	3	13
1607.940	-46.0	Main	-26.0	-20.0	Peak	Channel 1, 1Mbs	3.6	1
1624.620	-46.1	Main	-26.0	-20.1	Peak	Channel 6, 1Mbs	3.6	6
2399.890	-36.4	Main	-16.0	-20.4	Peak	Channel 1, 1Mbs	3.6	1
1647.960	-46.9	Main	-26.0	-20.9	Peak	Channel 13, 1Mbs	3.6	13
7310.720	-50.1	Main	-26.0	-24.1	Peak	Channel 6, 1Mbs	3.6	6
7235.840	-50.7	Main	-26.0	-24.7	Peak	Channel 1, 1Mbs	3.6	1
7415.620	-51.4	Main	-26.0	-25.4	Peak	Channel 13, 1Mbs	3.6	13
3245.130	-53.2	Main	-26.0	-27.2	Peak	Channel 1, 1Mbs	3.6	1
3286.360	-54.3	Main	-26.0	-28.3	Peak	Channel 6, 1Mbs	3.6	6

Final Measurements :

Instrument Settings: RB=VB=1MHz, Zero Span (Span = 0Hz), sample detector, single sweep and sweep time set to auto, or, if the device is not transmitting continuously, the sweep time is set to be at least 3 times the burst repetition frequency. If the highest signal level on the screen is above the limit then the average power is determined over the complete transmission burst.

Measurements are made only on those frequencies that exceed the limit during the preliminary measurements and at the operating voltage that produced the highest emission level.

Final (Zero-Span) measurement - 802.11b mode

Final Measurements :

Instrument Settings: RB=VB=1MHz, Zero Span (Span = 0Hz), sample detector, single sweep and sweep time set to auto, or, if the device is not transmitting continuously, the sweep time is set to be at least 3 times the burst repetition frequency. If the highest signal level on the screen is above the limit then the average power is determined over the complete transmission burst.

As there were no emissions above the limit during the preliminary (peak) scan, no final measurements were required

Page 18 of 48 Aug 16 2009

Transmitter Characteristics Test Data Job Number: J76040 Client: Summit Data Communications T-Log Number: T76236 Model: SDC-MCF10G Account Manager: Christine Krebil Standard: Japanese Radio Law - Item 19 of Article 12 Contact: Ron Seide Broadband plots from 30MHz to 12.5GHz for channels 1, 6 and 13 Plots are shown for an operating voltage of 3.6V (worst case operating voltage) and at a data rate of 1Mb/s (worst case data rate). Measurements were made at operating voltages of 3.6V, 3.3V and 3.0V and at data rates of 11Mb/s and 1Mb/s. Channel 1, 1Mbs, Main 10.0 0.0 -10.0 -20.0 9.00-40.0 -40.0 -50.0 -60.0 -70.0 1000.0 30.0 100.0 12500. Frequency (MHz) Channel 6, 1Mbs, Main 10.0 0.0 -10.0 -20.0 (ggm) -30.0 (40.0 -50.0 -60.0 -70.0 30.0 100.0 1000.0 12500 Frequency (MHz) Channel 13, 1Mbs, Main 10.0 0.0 -10.0 ছ -20.0 9.00-40.0 0.04--50.0 -70.0 -\ 1000.0 Frequency (MHz)

Page 19 of 48 Aug 16 2009

Transmitter Characteristics Test Data Client: Summit Data Communications Job Number: J76040 T-Log Number: T76236 Model: SDC-MCF10G Account Manager: Christine Krebil Standard: Japanese Radio Law - Item 19 of Article 12 Contact: Ron Seide Channel 1 - Emissions at band edge. Cursors are placed on the highest signal below 2387 MHz and the highest signal from 2387MHz to 2400 MHz -10.0 Analyzer Settings Agilent Technologies, E4446A -15.0CF: 2387.000 MHz SPAN: 26,000 MHz -20.0 RB: 1,000 MHz VB: 1,000 MHz -25.0 Detector: POS -30.0 -35.0 Attn: 10 DB RL Offset: 11.0 DB Sweep Time: 2.0ms Ref Lvl: 9.0 DBM -40.0 Comments -45.0 Channel 1, 1Mbs, Main -52.0 2380.0 2385.0 2390.0 2395.0 2400.0 2374.0 Frequency (MHz) -45.42 💠 -*- 🔓▼ Elliott Cursor 1 2387.0066 Delta Freq. 12.886 -36.41 💠 🛧 🖫 Cursor 2 2399.8928 Delta Amplitude Channel 13 emissions at band edge. Cursors placed on the highest signal above 2496.5 MHz and the highest signal between 2383.5 - 2496.5 MHz -10.0 Analyzer Settings Agilent Technologies, E4446A -15.0 CF: 2691.750 MHz SPAN: 416,500 MHz $-20.0 \cdot$ RB: 1,000 MHz VB: 1,000 MHz -25.0 Detector: POS Amplitude -30.0 Attn: 20 DB RL Offset: 11.0 DB -35.0 Sweep Time: 1.0ms Ref Lvl: 11.0 DBM -40.0 -45.0 Comments Channel 13, 1MBs, Main, -50.0 3.60 -54.0 2800 2850 2550 2600 2650 2700 2750 2900 2484 Frequency (MHz) 2483.9297 Delta Freq. 216.735 -36.55 💠 🛧 🌣 Cursor 2 2700.6643 Delta Amplitude 1.67

Page 20 of 48 Aug 16 2009

Elliott

Transmitter Characteristics Test Data

An Z(Z=) company_	
Client: Summit Data Communications	Job Number: J76040
Model: SDC-MCF10G	T-Log Number: T76236
Model. SDC-MCF10G	Account Manager: Christine Krebil
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Ron Seide

Run #4: Antenna Power

Date of Test: 7/21/2009 0:00 Test Engineer: Mark Hill

Test Location: ENV Chamber

One antenna position was evaluated based on verification that changing the diversity switch position did not affect the output power at the center channe at nominal voltage.

Test Procedure:

Step 1:Determine the frequency of the signal with the highest power spectral density

Instrument Settings: RB=1MHz, VB=3MHz, Span > Occupied bandwidth, peak detector, max hold, sampling points > 400.

Once the display has settled (no more peaks added) the marker is paced at the peak of the signal

The spectrum analyzer center frequency is adjusted to the marker frequency (Mkr -> CF feature), the span is then set to zero spar

Step 2:Measure the output power

Instrument Settings: RB=VB=1MHz, continuous sweep, trace clear-write

The output power is the power measured by the average power meter connected to the IF output of the analyzer, corrected for the IF path loss, the value o the external attenuator (if used) and the duty cycle of the transmission sequence if the product is not transmitting continuously.

The eirp is calculated by adding the antenna gain (dBi) to the output power 9converted to dBm/MHz). The maximum permitted eirp is 12.15dB

802.11b mode -	 initial measurement 	ts on center c	hannel to d	etermine wors	t-case mode
----------------	---	----------------	-------------	---------------	-------------

Channel	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%
Chamilei	Mode	FUIL	Cilalii	Dala Nale	3.0 V	3.3 V	3.6 V
Center	802.11b	Main		1Mb/s	2.33 mw/MHz	2.50 mw/MHz	2.62 mw/MHz
Center	802.11b	Aux		1Mb/s	2.33 mw/MHz	2.44 mw/MHz	2.62 mw/MHz
Center	802.11b	Main		11Mb/s	1.79 mw/MHz	1.92 mw/MHz	2.06 mw/MHz
802.11b mo	de - final me	asurements	•				
Low	802.11b	Main		1Mb/s	3.01 mw/MHz	3.01 mw/MHz	3.08 mw/MHz
Center	802.11b	Main		1Mb/s	2.33 mw/MHz	2.50 mw/MHz	2.62 mw/MHz
13	802.11b	Main		1Mb/s	2.56 mw/MHz	2.68 mw/MHz	2.87 mw/MHz

Lowest Output Power: 2.33 mw/MHz Highest Output Power: 3.08 mw/MHz

Nominal Output Power: 3.86 mw/MHz

Deviation In Output Power: -39.6% to -20.4%

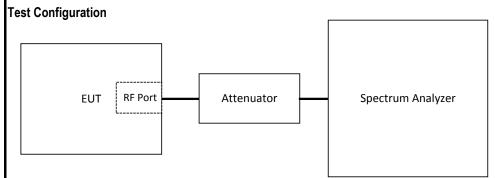
EIRP

Highest Output Power: 3.08 mw/MHz

Highest Output Power: 4.88 dBm/MHz

Antenna Gain: 0.00 dBi

EIRP 4.88 dBm/MHz


Page 21 of 48 Aug 16 2009

E E	Hiott Tran	Transmitter Characteristics Test Data			
	Summit Data Communications	Job Number:	J76040		
Madal	SDC-MCF10G	T-Log Number:	T76236		
woder.	SDC-IVICE 10G	Account Manager:	Christine Krebil		
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Ron Seide		

RADIO EQUIPMENT USED FOR 2.4 GHz BAND WIDE-BAND LOW-POWER DATA COMMUNICATIONS SYSTEM (Radio station using 2400 - 2483.5 MHz)

Summary of Results

Test Performed	Mode	Requirement	Measurement	Result
Frequency Error	802.11g	50ppm or better	802.11g: 11.19 ppm	Pass
Occupied bandwidth (2400 - 2483.5MHz)	802.11g	DSSS: 500kHz < BW < 26MHz OFDM: < 38MHz	OFDM: 17.55 MHz	Pass
Spreading Rate (2400-2483.5MHz)	802.11g	5 or more	802.11g: 59.9	Pass
OFDM Carrier Spacing	802.11g	-	52 carriers with a spacing of 0.3125MHz	-
Spurious Emissions	802.11g	Below 2387MHz: < 2.5uW/MHz 2387 - 2400 MHz < 25uW/MHz 2483.5-2496.5MHz < 25uW/MHz (2497 - 2510 for #14) Above 2496.5 MHz: 2.5uW/MHz	0.095uW at 2645.83 MHz 14.2dB below the limit	Pass
Antenna power	802.11g	Maximum permitted: BW < 26MHz: 10mW/MHz BW < 38MHz: 5mW/MHz Power Tolerance: -80% to +20% EIRP not to exceed 12.15dBm/MHz	Rated Power: 2.01 mW/MHz Tolerance: -56.8% to -3.2% EIRP: 2.90 dBm/MHz	Pass

Test Environment

Temperature: 15-30 °C Rel. Humidity: 20-75 % Pressure: 86-106 kPa

Nominal Supply Voltage 3.3 Vdc (provided by host device)

Duty Cycle and Transmission Cycle Time

Data Rate	Duty Cycle	Transmission cycle time
Mbs	%	ms
1	100	N/A - Continous
11	75	6.00
6	93.6	2.21
54	19.35	1.24

Page 22 of 48 Aug 16 2009

An WAS company	Transmitter Characteristics Test Data
Client: Summit Data Communications	Job Number: J76040
Model: SDC-MCF10G	T-Log Number: T76236
Model. SDC-MCF10G	Account Manager: Christine Krebil
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Ron Seide

Run #1: Frequency Error

Date of Test: 7/21/2009 0:00

Test Location: ENV Chamber

Test Engineer: Mark Hill

One antenna position was evaluated based on verification that changing the diversity switch position did not affect the center frequency of the cente channel at nominal voltage on the center channel.

The center frequency was measured at nominal and extreme voltage conditions. Measurements showed no change in frequency stability due to voltage extremes, all other measurements taken at nominal voltage.

For OFDM modulation with no provision for operating with an unmodulated signal measurements were made on amodulated signal at the top, center and bottom channels. The operating frequency was determined by measuring the frequency of the carrier observed at the center of the waveform that appears as a small peak within the central null. The analyzer was configured with RB=10kHz, VBW=1kHz, peak detector and max hold, as this gave the cleanest signal.

	Nominal Frequency (MHz) - 802.11g								
Low Channel 2412.0	Ce	enter Channel 2437.0		High Channel	2472.0				
	Measured Frequency (MHz) Frequency Error (ppm)								
Voltage	Nominal -10%	Nominal	Nominal + 10%						
voltage	3.0 V	3.3 V	3.6 V	3.0 V	3.3 V	3.6 V			
Low Channel		2411.973000			11.19				
Center Channel	2436.975000	2436.975000	2436.975000	10.26	10.26	10.26			
High Channel		2471.976000			9.71				

Requirement (ppm): 50.0

Notes:

All testing performed at 1Mbs for 802.11b (CCK) and 6Mbs for 802.11g (OFDM)

Unless otherwise noted, TX Diversity switch was set to main only. Testing was performed on the Main connector

Page 23 of 48 Aug 16 2009

Elliott

Transmitter Characteristics Test Data

Client: Summit Data Communications	Job Number:	J76040
Model: SDC-MCF10G	T-Log Number:	T76236
Would Spo-Micrio	Account Manager:	Christine Krebil
Standard: Japanese Radio Law - Item 19 of Article 12	Contact:	Ron Seide

Run #2: Occupied bandwidth and spreading bandwidth

Date of Test: 7/22/2009 0:00 Test Location: ENV Chamber Test Engineer: Mark Hill

One antenna position was evaluated based on verification that changing the diversity switch position did not affect the occupied bandwidth of the center channel at nominal voltage.

The bandwidth was measured on the center channel at the lowest data rate at nominal and high and low voltages. As the bandwidth remained constant with input voltage all other channels and data rates were measured only at nominal voltage.

The occupied bandwidth was measured with the spectrum analyzer configured according to the table below. The occupied bandwidth was determined from the 99% power bandwidth by determining the highest and lowest frequencies at which 99.5% of the power was captured and then subtracting the two numbers. the calculation was done by either the analyzer directly or via the software used to capture the plot. One plot for each mode tested is provided for reference.

The spreading bandwidth was measured with the spectrum analyzer configured according to the table below. The spreading bandwidth was the 90% powe bandwidth determined by the highest and lowest frequencies at which 95% of the power was captured and then subtracting the two numbers. This calculation was done by either the analyzer directly or via the software used to capture the plot.

Instrument Settings and Test Requirements								
Modulation Type	Analyzer settings				Bandwidth Requirement			
wodulation Type	Span	RB	VB	Other	Occupied	Spreading		
OFDM (e.g. 802.11gn)	76-133	≤ 1140kHz	300kHz	Sample detector, averaging (10 sweeps) ² , sweep time auto ¹	≤ 38.0MHz			

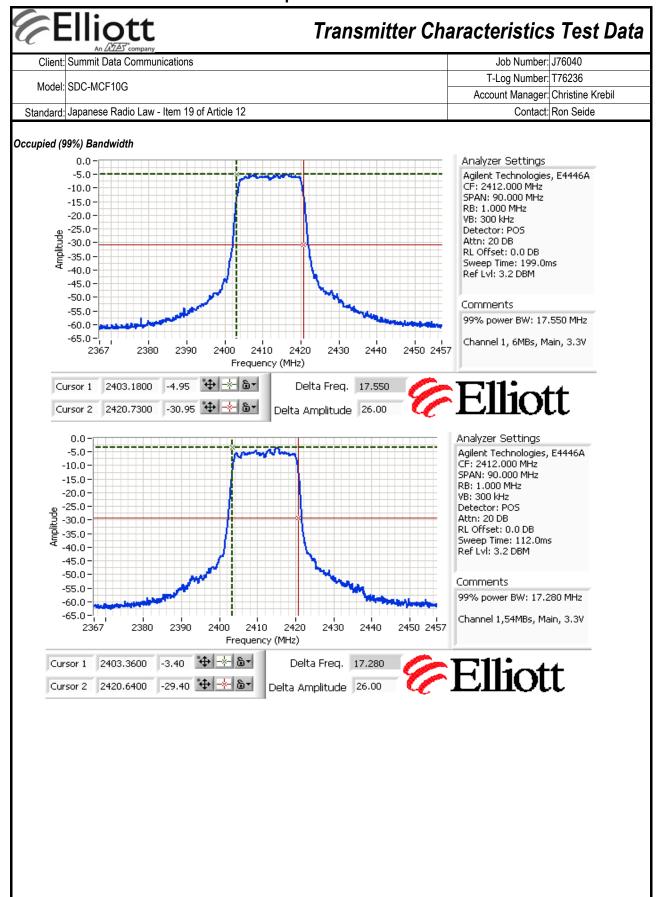
Note 1: For burst transmissions sweep time set to ensure dwell time in each bandwidth > transmission cycle time (sweep time = transmit cycle time x span/ measurement bandwidth)

Note 2: For burst transmissions trace set for max hold and detector set to positive peal

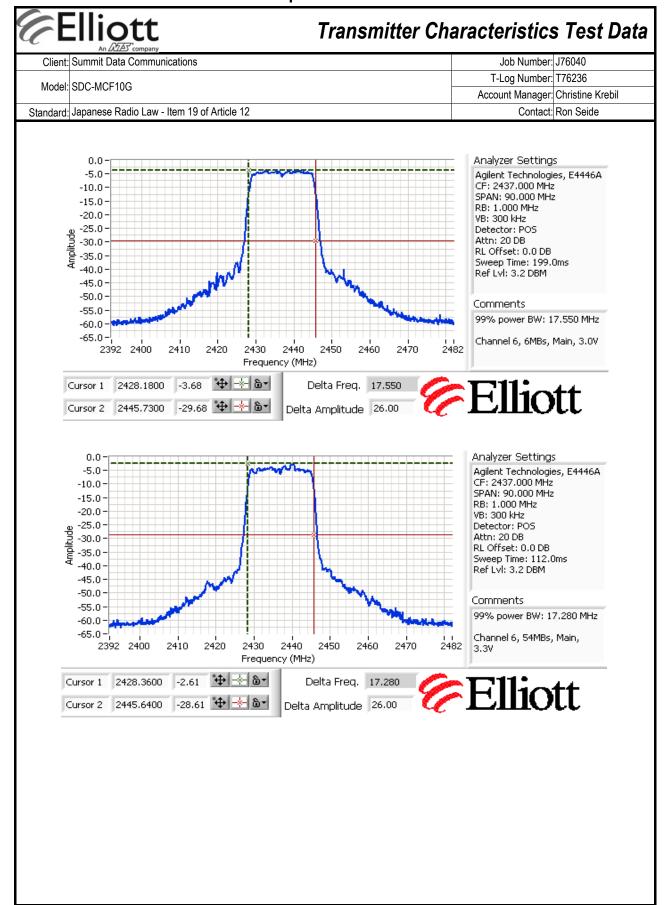
Took Dooulto	002 44~ M	ada (OEDM	500kHz ≤ bandwidth	✓ 20MU=\
rest Results.	OUZ. I IU IVI	oae (Ofbivi.	SUUKEZ S Dandwidth	≥ SOINIUZI

	· · · · · · · · · · · · · · · · · · ·								
Channel	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%		
Chaine	Wode	Foit	Chain	Dala Nale	3.0 V	3.3 V	3.6 V		
1	802.11g	Main		6Mb/s		17.55			
6	802.11g	Main		6Mb/s	17.55	17.55	17.55		
6	802.11g	Aux		6Mb/s		17.55			
13	802.11g	Main		6Mb/s		17.55			
1	802.11g	Main		54Mb/s		17.28			
6	802.11g	Main		54Mb/s		17.28			
6	802.11g	Aux		54Mb/s		17.28			
13	802.11g	Main		54Mb/s		17.28			

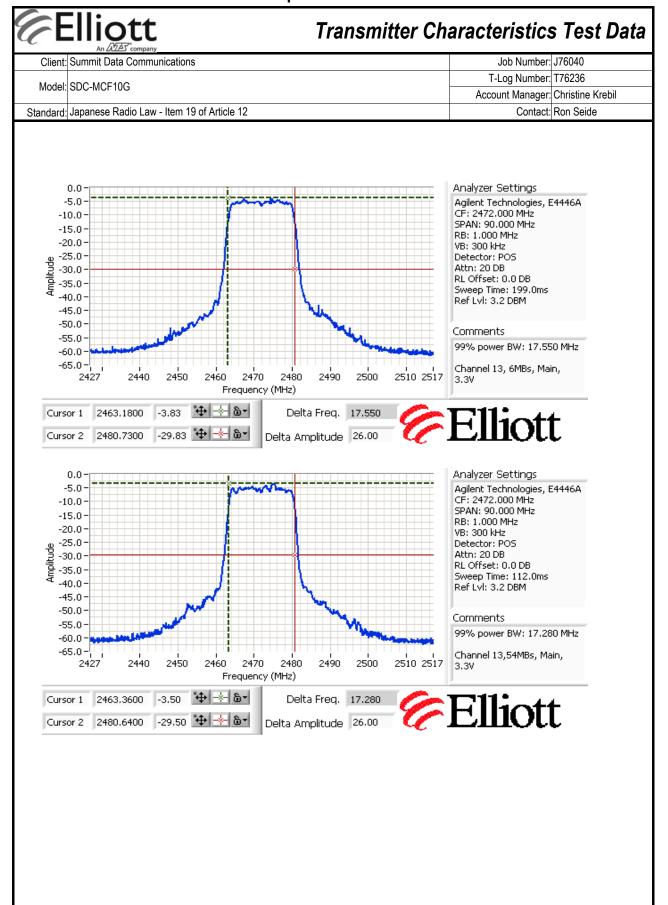
Test Results, 802.11g Mode (OFDM, 500kHz ≤ bandwidth ≤ 38MHz) - 90% Pwr Bandwidth


- ·				2 . 2 .	Nominal -10%	Nominal	Nominal + 10%
Channel	Mode	Port	Chain	Data Rate	3.0 V	3.3 V	3.6 V
1	802.11g	Main		6Mb/s		14.975	
6	802.11g	Main		6Mb/s		14.977	
13	802.11g	Main		6Mb/s		14.986	
1	802.11g	Main		54Mb/s		15.006	
6	802.11g	Main		54Mb/s		14.975	
13	802.11g	Main		54Mb/s		15.002	

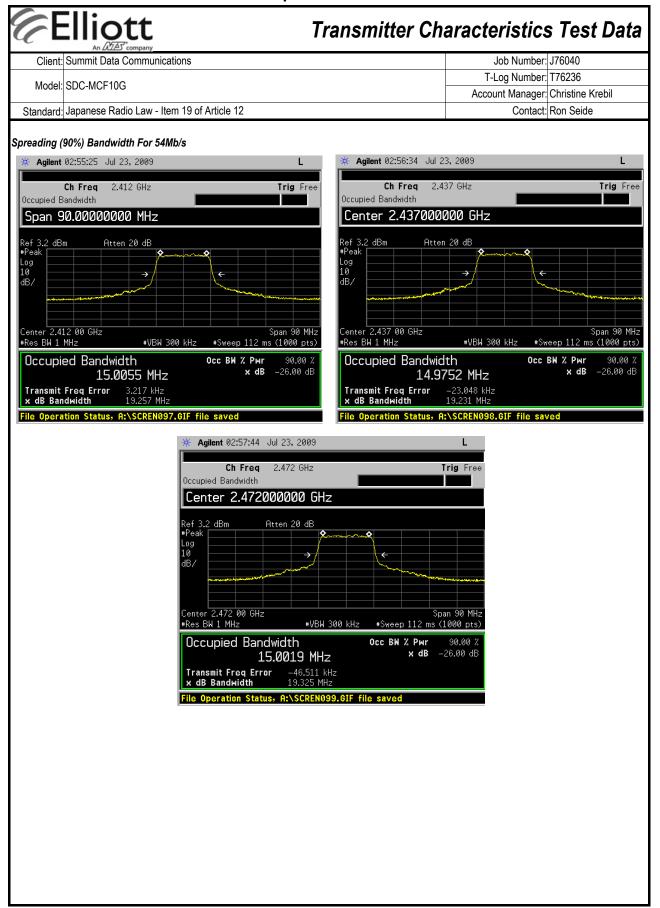
Spreading bandwidth


Symbol rate for 802.11g has a 4us period (250kHz symbol rate) for all data rates

,		Symbol Rate (Msym/s)	90% Signal Bandwidth	Spreading rate	Requirement
240	00 - 2483.5 MHz:	0.250	14.975	59.9	5.0


Page 24 of 48 Aug 16 2009


Page 25 of 48 Aug 16 2009


Page 26 of 48 Aug 16 2009

Page 27 of 48 Aug 16 2009

Page 28 of 48 Aug 16 2009

Page 29 of 48 Aug 16 2009

Elliott

Transmitter Characteristics Test Data

An ZAZES company	
Client: Summit Data Communications	Job Number: J76040
Model: SDC-MCF10G	T-Log Number: T76236
Wodel. SDC-WCF10G	Account Manager: Christine Krebil
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Ron Seide

Run #3: Spurious and unwanted emissions

Date of Test: 7/22/-0 Test Location: ENV Chamber Test Engineer: Mark Hill

Test Requirements

Frequency Range	Limit		
(MHz)	uW/MHz	dBm/MHz	
30 - 2387	2.5	-26.0	
2387 - 2400	25.0	-16.0	
2483.5 - 2496.5	25.0	-16.0	
2496.5 - 12500	2.5	-26.0	

The limit is for a 1MHz measurement bandwidth.

Measurement Summary - Highest emissions in each operating mode

All preliminary peak measurements were below the limit by more than 10dB.

Preliminary Measurements :

Instrument Settings: RB=VB=1MHz, Positive peak detector and maximum hold for a minimum of 10 sweeps, but until the spectrum displayed becomes stable and no new signals are observed.

The device transmits continuously so the analyzer sweep time is auto-coupled

The device transmits in a burst mode, sweep time is calculated for each band tested as shown below. The plots are composite plots of the individual frequency bands. so the analyzer sweep time is auto-coupled.

			Burst repetit	ion frequency	1.24 ms	
ĺ	Frequen	ıcy (MHz)	Bandwid	lth (MHz)	Sweep	
ĺ	Start	Stop	RB	VB		
ĺ	30	1000	1	1	1203 ms	
ĺ	1000	2483.5	1	1	1840 ms	
ĺ	2374	2400	1	1	32 ms	
ĺ	2483.5	2900	1	1	516 ms	С
ĺ	2900	6000	1	1	3844 ms	
ĺ	6000	12500	1	1	8060 ms	

Channels 1 through 13

Page 30 of 48 Aug 16 2009

EII	iott
	An ///A) company

Transmitter Characteristics Test Data

Client:	Summit Data Communications	Job Number:	J76040
Model:	SDC-MCF10G	T-Log Number:	T76236
Model.	SDC-WCF10G	Account Manager:	Christine Krebil
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Ron Seide

Preliminary measurement - 802.11g mode

All plots generated using a 1MHz RBW

For emissions below 2387 MHz the limit is 2.5uW/MHz (-26dBm/MHz).

From 2387 - 2400 MHz the limit is 25uW/MHz (-16dBm/MHz). From 2483.5 - 2496.5 MHz the limit is 25uW/MHz (-16dBm/MHz)

Antenna ports tested were both main and aux ports, worst case result is reported

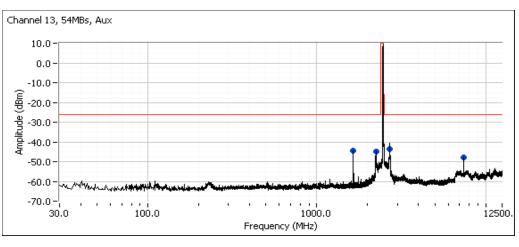
The device transmits in a burst mode, sweep time is calculated for each band tested as shown below. The plots are composite plots of the individual frequency bands. so the analyzer sweep time is auto-coupled.

			Burst repetit	ion frequency	1.24 ms
Freq	uer	ncy (MHz)	Bandwid	dth (MHz)	Sweep
Start		Stop	RB	VB	-
	30	1000	1	1	1203 ms
1	000	2483.5	1	1	1840 ms
2	374	2400	1	1	32 ms
248	3.5	2900	1	1	516 ms
2	900	6000	1	1	3844 ms
6	000	12500	1	1	8060 ms

Channels 1 through 13

Emissions Test Data - 802.11g Preliminary Measurements

		minuty mode					
Level	Antenna			Detector	Comments	Operating	
dBm	Port	Limit	Margin			Voltage	
-28.6	Aux	-16.0	-12.6	Peak	Channel 13, 54MBs (1.38uW)	3.6	
-40.2	Aux	-26.0	-14.2	Peak	Channel 1, 54MBs (0.095uW)	3.6	
-31.6	Aux	-16.0	-15.6	Peak	Channel 1, 54MBs	3.6	
-42.2	Aux	-26.0	-16.2	Peak	Channel 13, 54MBs	3.6	
-42.3	Aux	-26.0	-16.3	Peak	Channel 6, 54Mbs	3.6	
-43.8	Aux	-26.0	-17.8	Peak	Channel 13, 54MBs	3.6	
-44.1	Aux	-26.0	-18.1	Peak	Channel 1, 54MBs	3.6	
-44.5	Aux	-26.0	-18.5	Peak	Channel 13, 54MBs	3.6	
-44.6	Aux	-26.0	-18.6	Peak	Channel 1, 54MBs	3.6	
-44.9	Aux	-26.0	-18.9	Peak	Channel 6, 54Mbs	3.6	
-45.1	Aux	-26.0	-19.1	Peak	Channel 13, 54MBs	3.6	
-45.2	Aux	-26.0	-19.2	Peak	Channel 6, 54Mbs	3.6	
-45.4	Aux	-26.0	-19.4	Peak	Channel 1, 54MBs	3.6	
-45.4	Aux	-26.0	-19.4	Peak	Channel 1, 54MBs	3.6	
-46.3	Aux	-26.0	-20.3	Peak	Channel 6, 54Mbs	3.6	
-47.7	Aux	-26.0	-21.7	Peak	Channel 13, 54MBs	3.6	
	Level dBm -28.6 -40.2 -31.6 -42.2 -42.3 -43.8 -44.1 -44.5 -44.6 -44.9 -45.1 -45.2 -45.4 -45.4	Level Antenna dBm Port -28.6 Aux -40.2 Aux -31.6 Aux -42.2 Aux -42.3 Aux -42.3 Aux -43.8 Aux -44.1 Aux -44.5 Aux -44.6 Aux -44.9 Aux -45.1 Aux -45.2 Aux -45.4 Aux -45.4 Aux -46.3 Aux	Level dBm Antenna Port Limit -28.6 Aux -16.0 -40.2 Aux -26.0 -31.6 Aux -16.0 -42.2 Aux -26.0 -42.3 Aux -26.0 -43.8 Aux -26.0 -44.1 Aux -26.0 -44.5 Aux -26.0 -44.6 Aux -26.0 -44.9 Aux -26.0 -45.1 Aux -26.0 -45.2 Aux -26.0 -45.4 Aux -26.0 -45.4 Aux -26.0 -46.3 Aux -26.0	Level dBm Antenna Port Limit Margin -28.6 Aux -16.0 -12.6 -40.2 Aux -26.0 -14.2 -31.6 Aux -16.0 -15.6 -42.2 Aux -26.0 -16.2 -42.3 Aux -26.0 -16.3 -43.8 Aux -26.0 -17.8 -44.1 Aux -26.0 -18.1 -44.5 Aux -26.0 -18.5 -44.6 Aux -26.0 -18.6 -44.9 Aux -26.0 -18.9 -45.1 Aux -26.0 -19.1 -45.2 Aux -26.0 -19.1 -45.4 Aux -26.0 -19.4 -45.4 Aux -26.0 -19.4 -46.3 Aux -26.0 -20.3	Level dBm Antenna Port Limit Margin -28.6 Aux -16.0 -12.6 Peak -40.2 Aux -26.0 -14.2 Peak -31.6 Aux -16.0 -15.6 Peak -42.2 Aux -26.0 -16.2 Peak -42.3 Aux -26.0 -16.3 Peak -42.3 Aux -26.0 -17.8 Peak -43.8 Aux -26.0 -18.1 Peak -44.1 Aux -26.0 -18.1 Peak -44.5 Aux -26.0 -18.5 Peak -44.6 Aux -26.0 -18.6 Peak -44.9 Aux -26.0 -18.9 Peak -45.1 Aux -26.0 -19.1 Peak -45.2 Aux -26.0 -19.2 Peak -45.4 Aux -26.0 -19.4 Peak -45.4 Aux -26.0 <td< td=""><td>Level dBm Antenna Port Limit Limit Margin Detector Comments -28.6 Aux -16.0 -12.6 Peak Channel 13, 54MBs (1.38uW) -40.2 Aux -26.0 -14.2 Peak Channel 1, 54MBs (0.095uW) -31.6 Aux -16.0 -15.6 Peak Channel 1, 54MBs -42.2 Aux -26.0 -16.2 Peak Channel 13, 54MBs -42.3 Aux -26.0 -16.3 Peak Channel 6, 54Mbs -43.8 Aux -26.0 -17.8 Peak Channel 13, 54MBs -44.1 Aux -26.0 -18.1 Peak Channel 13, 54MBs -44.5 Aux -26.0 -18.5 Peak Channel 13, 54MBs -44.6 Aux -26.0 -18.6 Peak Channel 1, 54MBs -45.1 Aux -26.0 -19.1 Peak Channel 6, 54Mbs -45.2 Aux -26.0 -19.2 Peak Channel 1, 54MBs -45</td><td>Level dBm Antenna Port Limit Margin Detector Comments Operating Voltage -28.6 Aux -16.0 -12.6 Peak Channel 13, 54MBs (1.38uW) 3.6 -40.2 Aux -26.0 -14.2 Peak Channel 1, 54MBs (0.095uW) 3.6 -31.6 Aux -16.0 -15.6 Peak Channel 1, 54MBs 3.6 -42.2 Aux -26.0 -16.2 Peak Channel 13, 54MBs 3.6 -42.3 Aux -26.0 -16.3 Peak Channel 13, 54MBs 3.6 -43.8 Aux -26.0 -17.8 Peak Channel 13, 54MBs 3.6 -44.1 Aux -26.0 -18.1 Peak Channel 13, 54MBs 3.6 -44.5 Aux -26.0 -18.5 Peak Channel 13, 54MBs 3.6 -44.9 Aux -26.0 -18.9 Peak Channel 13, 54MBs 3.6 -45.1 Aux -26.0 -19.1 Peak C</td></td<>	Level dBm Antenna Port Limit Limit Margin Detector Comments -28.6 Aux -16.0 -12.6 Peak Channel 13, 54MBs (1.38uW) -40.2 Aux -26.0 -14.2 Peak Channel 1, 54MBs (0.095uW) -31.6 Aux -16.0 -15.6 Peak Channel 1, 54MBs -42.2 Aux -26.0 -16.2 Peak Channel 13, 54MBs -42.3 Aux -26.0 -16.3 Peak Channel 6, 54Mbs -43.8 Aux -26.0 -17.8 Peak Channel 13, 54MBs -44.1 Aux -26.0 -18.1 Peak Channel 13, 54MBs -44.5 Aux -26.0 -18.5 Peak Channel 13, 54MBs -44.6 Aux -26.0 -18.6 Peak Channel 1, 54MBs -45.1 Aux -26.0 -19.1 Peak Channel 6, 54Mbs -45.2 Aux -26.0 -19.2 Peak Channel 1, 54MBs -45	Level dBm Antenna Port Limit Margin Detector Comments Operating Voltage -28.6 Aux -16.0 -12.6 Peak Channel 13, 54MBs (1.38uW) 3.6 -40.2 Aux -26.0 -14.2 Peak Channel 1, 54MBs (0.095uW) 3.6 -31.6 Aux -16.0 -15.6 Peak Channel 1, 54MBs 3.6 -42.2 Aux -26.0 -16.2 Peak Channel 13, 54MBs 3.6 -42.3 Aux -26.0 -16.3 Peak Channel 13, 54MBs 3.6 -43.8 Aux -26.0 -17.8 Peak Channel 13, 54MBs 3.6 -44.1 Aux -26.0 -18.1 Peak Channel 13, 54MBs 3.6 -44.5 Aux -26.0 -18.5 Peak Channel 13, 54MBs 3.6 -44.9 Aux -26.0 -18.9 Peak Channel 13, 54MBs 3.6 -45.1 Aux -26.0 -19.1 Peak C


Final Measurements :

Instrument Settings: RB=VB=1MHz, Zero Span (Span = 0Hz), sample detector, single sweep and sweep time set to auto, or, if the device is not transmitting continuously, the sweep time is set to be at least 3 times the burst repetition frequency. If the highest signal level on the screen is above the limit then the average power is determined over the complete transmission burst.

As there were no emissions above the limit during the preliminary (peak) scan, no final measurements were required

Page 31 of 48 Aug 16 2009

Test Report R76253 Rev 3.0 Transmitter Characteristics Test Data Job Number: J76040 Client: Summit Data Communications T-Log Number: T76236 Model: SDC-MCF10G Account Manager: Christine Krebil Standard: Japanese Radio Law - Item 19 of Article 12 Contact: Ron Seide Broadband plots from 30MHz to 12.5GHz for channels 1, 6 and 13 Plots are shown for an operating voltage of 3.6V (worst case operating voltage) and at a data rate of 54Mb/s (worst case data rate). Measurements were made at operating voltages of 3.6V, 3.3V and 3.0V and at data rates of 6Mb/s and 54Mb/s. Channel 1, 54MBs, Aux 10.0 0.0 -10.0 Amplitude (dBm) -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 100.0 1000.0 30.0 12500 Frequency (MHz) Channel 6, 54MBs, Aux 10.0 0.0 -10.0 -20.0 o) -30.0 -40.0 -50.0 -60.0-70.0 1000.0 12500 30.0 100.0 Frequency (MHz) Channel 13, 54MBs, Aux

Page 32 of 48 Aug 16 2009

Transmitter Characteristics Test Data Client: Summit Data Communications Job Number: J76040 T-Log Number: T76236 Model: SDC-MCF10G Account Manager: Christine Krebil Standard: Japanese Radio Law - Item 19 of Article 12 Contact: Ron Seide Channel 1 - Emissions at band edge. Cursors are placed on the highest signal below 2387 MHz and the highest signal from 2387MHz to 2400 MHz -10.0 Analyzer Settings Agilent Technologies, E4446A -15.0 CF: 2368,500 MHz SPAN: 63,000 MHz -20.0 RB: 1.000 MHz VB: 1.000 MHz -25.0 Detector: PK (CISPR) Attn: 20 DB -30.0 RL Offset: 11.0 DB Sweep Time: 78.0ms Ref Lvl: 14.2 DBM -35.0 -40.0 -45.0 Comments Channel 1, 54MBs -50.0 --54.0 = 2370 2337 2350 2380 2390 2400 Frequency (MHz) Delta Freq. 12.991 2387.0090 Cursor 1 -31.61 💠 📥 🖫 2400.0000 Delta Amplitude 12.51 Cursor 2 Channel 13 emissions at band edge. Cursors placed on the highest signal above 2496.5 MHz and the highest signal between 2383.5 - 2496.5 MHz -10.0 Analyzer Settings Agilent Technologies, E4446A -15.0 CF: 2691.750 MHz SPAN: 416,500 MHz -20.0 RB: 1.000 MHz VB: 1.000 MHz -25.0 Detector: PK (CISPR) Attn: 20 DB -30.0 RL Offset: 11.0 DB Sweep Time: 0.5s -35.0Ref Lvl: 14.2 DBM -40.0 Comments -45.0 Channel 13, 54MBs -52.5 2800 2484 2550 2600 2650 2700 2750 2850 Frequency (MHz) -28.58 💠 🔆 🖫 Delta Freq. 216.380 Cursor 1 2483,5000 -42.21 💠 📥 🖫 Cursor 2 Delta Amplitude 13.63

Page 33 of 48 Aug 16 2009

Elliott

Transmitter Characteristics Test Data

	An 2025 company		
Client:	Summit Data Communications	Job Number:	J76040
Model:	SDC-MCF10G	T-Log Number:	T76236
Wodel.	SDC-WCF10G	Account Manager:	Christine Krebil
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Ron Seide

Run #4: Antenna Power and effective isotropic radiated power (eirp)

Date of Test: 7/21/2009 0:00 Test Engineer: Mark Hill

Test Location: ENV Chamber

One antenna position was evaluated based on verification that changing the diversity switch position did not affect the output power at the center channe at nominal voltage.

Test Procedure:

Step 1:Determine the frequency of the signal with the highest power spectral density

Instrument Settings: RB=1MHz, VB=3MHz, Span > Occupied bandwidth, peak detector, max hold, sampling points > 400.

Once the display has settled (no more peaks added) the marker is paced at the peak of the signal

The spectrum analyzer center frequency is adjusted to the marker frequency (Mkr -> CF feature), the span is then set to zero spar

Step 2:Measure the output power

Instrument Settings: RB=VB=1MHz, continuous sweep, trace clear-write

The output power is the power measured by the average power meter connected to the IF output of the analyzer, corrected for the IF path loss, the value o the external attenuator (if used) and the duty cycle of the transmission sequence if the product is not transmitting continuously.

The eirp is calculated by adding the antenna gain (dBi) to the output power 9converted to dBm/MHz). The maximum permitted eirp is 12.15dB

Channel	Mode	Port	Dort	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%
Channel	Mode	POIL	Chain	Dala Rale	3.0 V	3.3 V	3.6 V	
802.11g mo	de - initial me	easurements	on center cha	nnel to determine worst-ca	se mode/antenna			
Center	802.11g	Aux		6Mb/s	1.16 mw/MHz	1.24 mw/MHz	1.36 mw/MHz	
Center	802.11g	Main		6Mb/s	0.79 mw/MHz	0.86 mw/MHz	0.88 mw/MHz	
Center	802.11g	Aux		54Mb/s	1.66 mw/MHz	1.82 mw/MHz	1.95 mw/MHz	
802.11g mode - final measurements.								
Low	802.11g	Aux		54Mb/s	0.89 mw/MHz	0.91 mw/MHz	0.98 mw/MHz	
Center	802.11g	Aux		54Mb/s	1.66 mw/MHz	1.82 mw/MHz	1.95 mw/MHz	
High	802.11g	Aux		54Mb/s	0.87 mw/MHz	0.93 mw/MHz	0.98 mw/MHz	

Lowest Output Power: 0.9 mw/MHz Highest Output Power: 2.0 mw/MHz

Nominal Output Power: 2.01 mw/MHz

Deviation In Output Power: -56.8% to -3.2%

EIRP

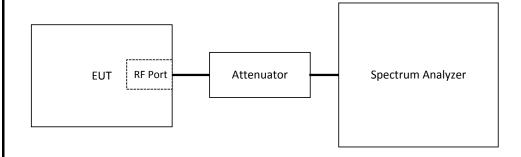
Highest Output Power: 1.95 mw/MHz

Highest Output Power: 2.90 dBm/MHz

Antenna Gain: 0.00 dBi

EIRP 2.90 dBm/MHz

Page 34 of 48 Aug 16 2009


E E	Transmitter Ch	Transmitter Characteristics Test Data			
	Summit Data Communications	Job Number:	J76040		
Madal	SDC-MCF10G	T-Log Number:	T76236		
wodei.	SDC-WICE ING	Account Manager:	Christine Krebil		
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Ron Seide		

RADIO EQUIPMENT USED FOR 2.4 GHz BAND WIDE-BAND LOW-POWER DATA COMMUNICATIONS SYSTEM (Radio station using 2471 - 2497 MHz)

Summary of Results

Test Performed	Mode	Requirement	Measurement	Result
Frequency Error	802.11b	50ppm or better	802.11b: 10.47 ppm	Pass
Occupied bandwidth (2484 MHz)	802.11b	DSSS: 500kHz < BW < 26MHz	DSSS: 18.6 MHz	Pass
Spreading Rate (2484 MHz)	802.11b	10 or more	802.11b: 10.8	Pass
Spurious Emissions	802.11b	Below 2387 MHz: < 2.5uW/MHz 2387 - 2400 MHz < 25uW/MHz 2497-2510 MHz < 25uW/MHz Above 2496.5 MHz: 2.5uW/MHz	4.47uW at 2469.440 MHz 7.5dB below the limit 0.079uW at 2510.094 MHz 15.0dB below the limit	Pass
Antenna power	802.11b	Maximum permitted: BW < 26MHz: 10mW/MHz BW < 38MHz: 5mW/MHz Power Tolerance: -80% to +20% EIRP not to exceed 12.15dBm/MHz	Rated Power 2.29 mW/MHz Tolerance: -39.2% to -20.8% EIRP: 2.58dBm/MHz	Pass

Test Configuration

Test Environment

Temperature: 15-30 °C
Rel. Humidity: 20-75 %
Pressure: 86-106 kPa

Nominal Supply Voltage 3.3 Vdc (provided by host device)

Page 35 of 48 Aug 16 2009

C	Ell	iott
-		** (MAT*

Transmitter Characteristics Test Data

Client: Summit Data Communications	Job Number:	J76040
Model: SDC-MCF10G	T-Log Number:	T76236
Model. SDC-MCF109	Account Manager:	Christine Krebil
Standard: Japanese Radio Law - Item 19 of Article 12	Contact:	Ron Seide

Duty Cycle and Transmission Cycle Time

Data Rate	Duty Cycle	Transmission cycle time
Mbs	%	ms
1	100	N/A - Continous
11	75	6

Run #1: Frequency Error

Date of Test: 7/21/2009 0:00 Test Location: ENV Chamber Test Engineer: Mark Hill

One antenna position was evaluated based on verification that changing the diversity switch position did not affect the center frequency of the cente channel at nominal voltage on the center channel.

The center frequency was measured at nominal and extreme voltage conditions. Measurements showed no change in frequency stability due to voltage extremes, all other measurements taken at nominal voltage.

For CCK modulation with no provision for operating with an unmodulated signal measurements were made on amodulated signal at the top, center and bottom channels. The operating frequency was determined by measuring the frequency at the null created at the center of the signal. The analyzer was configured with, RB=10kHz, VB=1kHz, peak detector and max hold, as this gave the cleanest signal.

	Nomin	al Frequency (MHz) - 802	2.11b				
Low Channel	Low Channel C		enter Channel 2484.0		High Channel		
	Measured Frequency (MHz)			Frequency Error (ppm)			
Voltago	Nominal -10%	Nominal	Nominal + 10%				
Voltage	3.0 V	3.3 V	3.6 V	3.0 V	3.3 V	3.6 V	
Center Channel	2483.974000	2483.974000	2483.974000	10.47	10.47	10.47	
Center Channel (Aux Port)		2483.980000			8.05		

Requirement (ppm): 50.0

Notes:

All testing performed at 1Mbs for 802.11b (CCK).

Unless otherwise noted, TX Diversity switch was set to main only. Testing was performed on the Main connector

Page 36 of 48 Aug 16 2009

C	EII	iott
		** (MAT*

Transmitter Characteristics Test Data

Client: Summit Data Communications	Job Number:	J76040
Model: SDC-MCF10G	T-Log Number:	T76236
Would Spo-Micrio	Account Manager:	Christine Krebil
Standard: Japanese Radio Law - Item 19 of Article 12	Contact:	Ron Seide

Run #2: Occupied bandwidth and spreading bandwidth

Date of Test: 7/22/2009 0:00 Test Location: ENV Chamber Test Engineer: Mark Hill

One antenna position was evaluated based on verification that changing the diversity switch position did not affect the occupied bandwidth of the center channel at nominal voltage.

The bandwidth was measured on the center channel at the lowest data rate at nominal and high and low voltages. As the bandwidth remained constant with input voltage all other channels and data rates were measured only at nominal voltage.

The occupied bandwidth was measured with the spectrum analyzer configured according to the table below. The occupied bandwidth was determined from the 99% power bandwidth by determining the highest and lowest frequencies at which 99.5% of the power was captured and then subtracting the two numbers. the calculation was done by either the analyzer directly or via the software used to capture the plot. One plot for each mode tested is provided for reference.

The spreading bandwidth was measured with the spectrum analyzer configured according to the table below. The spreading bandwidth was the 90% powe bandwidth determined by the highest and lowest frequencies at which 95% of the power was captured and then subtracting the two numbers. This calculation was done by either the analyzer directly or via the software used to capture the plot. One plot for each mode tested is provided for reference.

Instrument Settings and Test Requirements Analyzer settings **Bandwidth Requirement Modulation Type** Span RB VΒ Other Occupied Spreading **Direct Sequence** Positive peak detector, max hold, 52-91 ≤ 780kHz 300kHz ≤ 26.0MHz ≥ 500 kHz (e.g. 802.11b) sweep time auto1

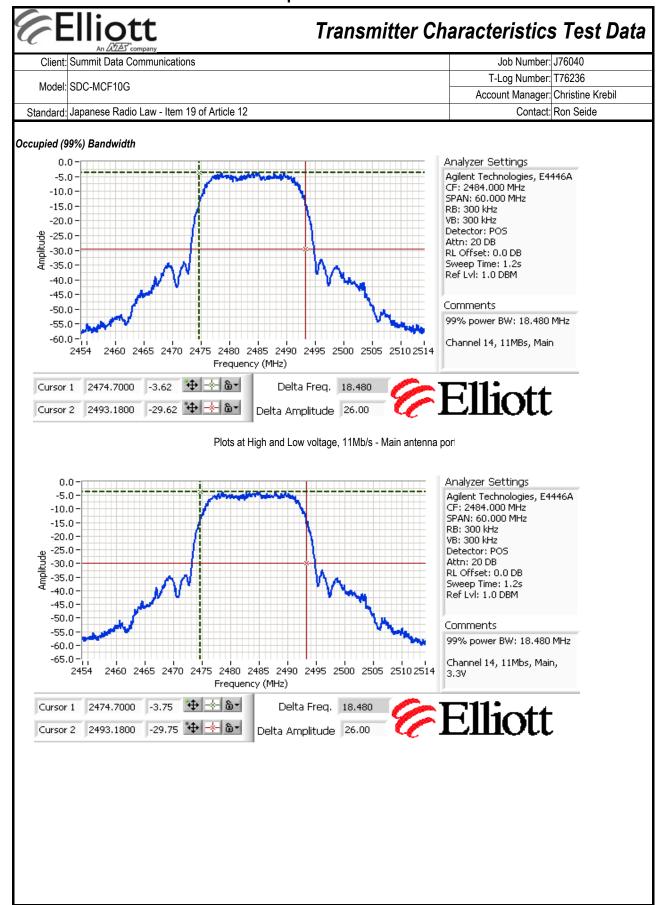
Note 1: For burst transmissions sweep time set to ensure dwell time in each bandwidth > transmission cycle time (sweep time = transmit cycle time x span/ measurement bandwidth)

Note 2: For burst transmissions trace set for max hold and detector set to positive peal

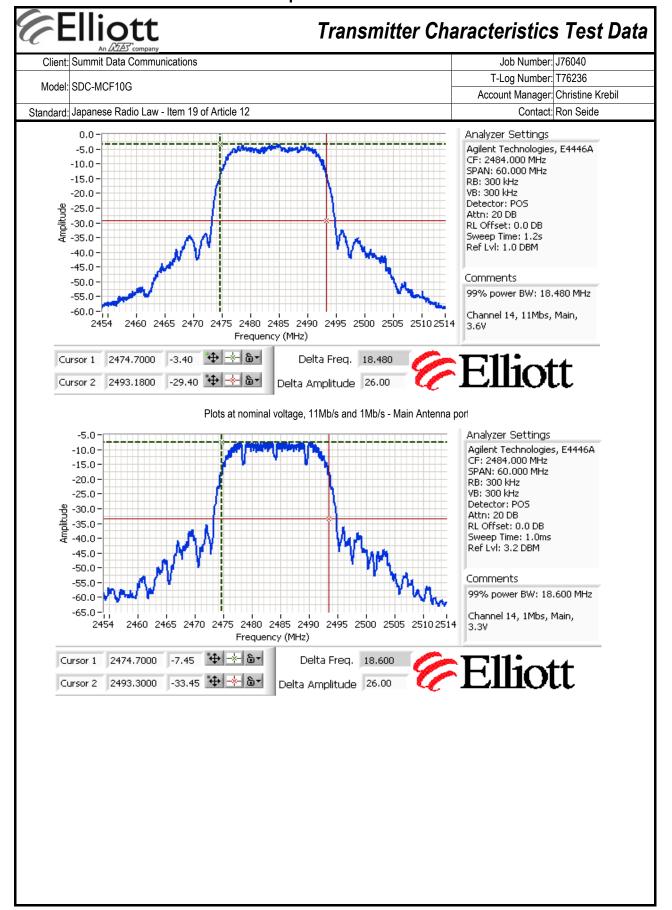
Test Results, 802.11b Mode (Direct Sequence, 500kHz ≤ bandwidth ≤ 26MHz)

Channel	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%	
Chamilei	Mode	FUIL	Gliaili	Dala Nale	3.0 V	3.3 V	3.6 V	
#14	802.11b	Main		1Mb/s		18.60		
#14	802.11b	Main		11Mb/s	18.48	18.48	18.48	
#14	802.11b	Aux		1Mb/s		18.60		
#14	802.11b	Aux		11Mb/s		18.54		

Test Results, 802.11b Mode (Direct Sequence, 500kHz≤ bandwidth ≤ 26MHz) - 90% Pwr Bandwidth


Channel	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%
Chamilei	Mode	FOIL	Chain	Data Nate	3.0 V	3.3 V	3.6 V
#14	802.11b	Main		1Mb/s		15.091	
#14	802.11b	Main		11Mb/s		14.853	
#14	802.11b	Aux		1Mb/s		15.094	
#14	802.11b	Aux		11Mb/s		14.893	

Spreading bandwidth


Symbol rate for 802.11b is 1Msym/s for 1Mb/s and 1.375Msym/s for data rates of 5.5Mb/s and above

	Data rate	Symbol Rate (Msym/s)	90% Signal Bandwidth	Spreading rate	Requirement
2484 MHz:	1Mb/s	1.000	15.091	15.1	10.0
2484 MHz:	5.5Mb/s & 11Mb/s	1.375	14.853	10.8	10.0

Page 37 of 48 Aug 16 2009

Page 38 of 48 Aug 16 2009

Page 39 of 48 Aug 16 2009

Elliott Transmitter Characteristics Test Data Job Number: J76040 Client: Summit Data Communications T-Log Number: T76236 Model: SDC-MCF10G Account Manager: Christine Krebil Standard: Japanese Radio Law - Item 19 of Article 12 Contact: Ron Seide Spreading (90%) Bandwidth - Main Antenna Port, 1Mb/s (Left) and 11Mb/s (Right) Agilent 01:36:24 Jul 23, 2009 Agilent 01:37:48 Jul 23, 2009 Ch Freq 2.484 GHz Trig Free Ch Freq 2.484 GHz Trig Free Occupied Bandwidth Occupied Bandwidth Center 2.484000000 GHz Sweep Time 1.200 s Atten 10 dB Log 10 dB/ Log 10 Center 2.484 00 GHz #Res BW 300 kHz Span 60 MHz Center 2.484 00 GHz #Res BW 300 kHz #VBW 300 kHz #VBW 300 kHz Sweep 1.066 ms (1000 pts) #Sweep 1.2 s (1000 pts) Occupied Bandwidth Occ BW % Pwr 90.00 % Occupied Bandwidth Occ BW % Pwr x dB -26.00 dB x dB -26.00 dB 15.0907 MHz 14.8533 MHz Transmit Freq Error x dB Bandwidth -45.623 kHz 21.460 MHz -86.733 kHz 21.552 MHz Transmit Freq Error x dB Bandwidth Spreading (90%) Bandwidth - Aux Antenna Port, 1Mb/s (Left) and 11Mb/s (Right) Agilent 03:34:26 Jul 23, 2009 * Agilent 03:35:59 Jul 23, 2009 Ch Freq 2.484 GHz Trig Free Ch Freq 2.484 GHz Trig Free Occupied Bandwidth Occupied Bandwidth Center 2.484000000 GHz Center 2.484000000 GHz Ref 3.2 dBm Atten 20 dB Ref 3.2 dBm #Peak Atten 20 dB Log 10 Center 2.484 00 GHz #Res BW 300 kHz Center 2.484 00 GHz #Res BW 300 kHz Span 60 MHz **#VBW** 300 kHz Sweep 1.066 ms (1000 pts) #VBW 300 kHz #Sweep 1.2 s (1000 pts) Occ BW % Pwr Occ BW % Pwr Occupied Bandwidth 90.00 % Occupied Bandwidth 90.00 % **x dB** -26.00 dB x dB -26.00 dB 15.0944 MHz 14.8932 MHz Transmit Freq Error x dB Bandwidth Transmit Freq Error x dB Bandwidth –63.088 kHz 21.485 MHz 21.462 MHz File Operation Status, A:\SCREN104.GIF file save

Page 40 of 48 Aug 16 2009

Elliott

Transmitter Characteristics Test Data

Client:	Summit Data Communications	Job Number:	J76040
Model:	SDC-MCF10G	T-Log Number:	T76236
	SDC-WICF 10G	Account Manager:	Christine Krebil
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Ron Seide

Run #3: Spurious and unwanted emissions

Date of Test: 7/22/2009 0:00 Test Location: ENV Chamber Test Engineer: Mark Hill

Test Requirements

Frequency Range	Limit			
(MHz)	uW/MHz	dBm/MHz		
30 - 2458	2.5	-26.0		
2458 - 2471	25.0	-16.0		
2497 - 2510	25.0	-16.0		
2496.5 - 12500	2.5	-26.0		

The limit is for a 1MHz measurement bandwidth.

Measurement Summary - Highest emissions in each operating mode

All preliminary peak measurements were below the limit by more than 10dB.

Preliminary Measurements :

Instrument Settings: RB=VB=1MHz, Positive peak detector and maximum hold for a minimum of 10 sweeps, but until the spectrum displayed becomes stable and no new signals are observed.

The device transmits continuously so the analyzer sweep time is auto-coupled

Preliminary measurement - 802.11b mode - GZ Band

All plots generated using a 1MHz RBW

For emissions below 2458 MHz the limit is 2.5uW/MHz (-26dBm/MHz).

From 2458 - 2471 MHz the limit is 25uW/MHz (-16dBm/MHz). From 2497 - 2510 MHz the limit is 25uW/MHz (-16dBm/MHz)

Antenna ports tested were both main and aux ports, worst case result is reported

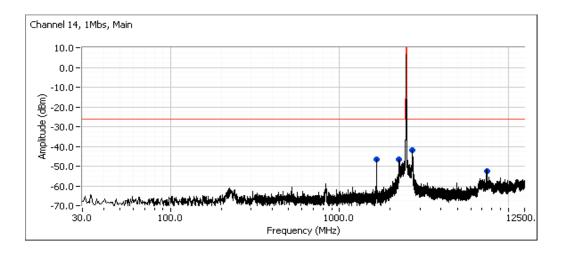
Frequency	Level	Antenna			Detector	Comments	Operating	Operating
MHz	dBm	Port	Limit	Margin			Voltage	Channel
2469.440	-23.5	Main	-16.0	-7.5	Peak	1MBs, 4.47uW	3.3	14
2469.343	-23.7	Main	-16.0	-7.7	Peak	1MBs	3.6	14
2469.343	-23.7	Main	-16.0	-7.7	Peak	1MBs	3	14
2498.625	-24.5	Main	-16.0	-8.5	Peak	1MBs	3.6	14
2498.625	-24.6	Main	-16.0	-8.6	Peak	1MBs	3	14
2498.527	-24.6	Main	-16.0	-8.6	Peak	1MBs	3.3	14
2510.094	-41.0	Main	-26.0	-15.0	Peak	1MBs	3.3	14
2454.137	-41.0	Main	-26.0	-15.0	Peak	1MBs	3.3	14
2456.899	-41.0	Main	-26.0	-15.0	Peak	1MBs	3.6	14
2511.101	-41.1	Main	-26.0	-15.1	Peak	1MBs	3.6	14
2510.321	-41.6	Main	-26.0	-15.6	Peak	1MBs	3	14
2707.240	-42.1	Main	-26.0	-16.1	Peak	1MBs	3.3	14
2457.516	-42.2	Main	-26.0	-16.2	Peak	1MBs	3	14
1655.930	-46.6	Main	-26.0	-20.6	Peak	1MBs	3.3	14
2264.100	-46.8	Main	-26.0	-20.8	Peak	1MBs	3.3	14
7458.870	-52.5	Main	-26.0	-26.5	Peak	1MBs	3.3	14

Page 41 of 48 Aug 16 2009

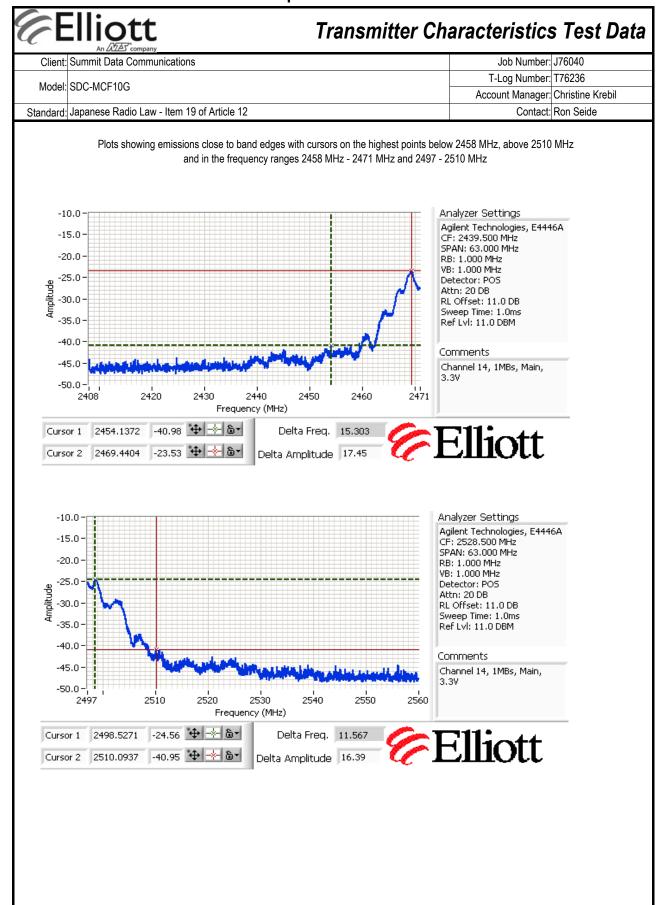
Elliott An AZES company	Transmitter Characteristics Test Data
Client: Summit Data Communications	Job Number: J76040
Model: SDC-MCF10G	T-Log Number: T76236
Widdel. SDC-Wick for	Account Manager: Christine Krebil
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Ron Seide

Final (Zero-Span) measurement

Final Measurements :


Instrument Settings: RB=VB=1MHz, Zero Span (Span = 0Hz), sample detector, single sweep and sweep time set to auto, or, if the device is not transmitting continuously, the sweep time is set to be at least 3 times the burst repetition frequency. If the highest signal level on the screen is above the limit then the average power is determined over the complete transmission burst.

As there were no emissions above the limit during the preliminary (peak) scan, no final measurements were required


Preliminary measurement scans - 802.11b mode - GZ Band

Plots are shown for an operating voltage of 3.6V (worst case operating voltage) and at a data rate of 1Mb/s (worst case data rate). Measurements were made at operating voltages of 3.6V, 3.3V and 3.0V and at data rates of 11Mb/s and 1Mb/s.

Broadband plot from 30MHz to 12.5GHz for channel 14

Page 42 of 48 Aug 16 2009

Page 43 of 48 Aug 16 2009

EII	iott
-----	------

Transmitter Characteristics Test Data

Client:	Summit Data Communications	Job Number:	J76040
Model:	SDC-MCF10G	T-Log Number:	T76236
	SDC-WICF 10G	Account Manager:	Christine Krebil
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Ron Seide

Run #4: Antenna Power

Date of Test: 7/21/2009 0:00 Test Engineer: Mark Hill

Test Location: ENV Chamber

One antenna position was evaluated based on verification that changing the diversity switch position did not affect the output power at the center channel at nominal voltage.

Test Procedure:

Step 1:Determine the frequency of the signal with the highest power spectral density

Instrument Settings: RB=1MHz, VB=3MHz, Span > Occupied bandwidth, peak detector, max hold, sampling points > 400.

Once the display has settled (no more peaks added) the marker is paced at the peak of the signal

The spectrum analyzer center frequency is adjusted to the marker frequency (Mkr -> CF feature), the span is then set to zero spar

Step 2:Measure the output power

Instrument Settings: RB=VB=1MHz, continuous sweep, trace clear-write

The output power is the power measured by the average power meter connected to the IF output of the analyzer, corrected for the IF path loss, the value o the external attenuator (if used) and the duty cycle of the transmission sequence if the product is not transmitting continuously.

The eirp is calculated by adding the antenna gain (dBi) to the output power 9converted to dBm/MHz). The maximum permitted eirp is 12.15dB

Channel	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%
Channel	Wode	POIL	Chain	Dala Rale	3.0 V	3.3 V	3.6 V
14	802.11b	Main		1Mb/s	1.69 mw/MHz	1.77 mw/MHz	1.81 mw/MHz
14	802.11b	Aux		1Mb/s	1.58 mw/MHz	1.69 mw/MHz	1.81 mw/MHz
14	802.11b	Main		11Mb/s	1.39 mw/MHz	1.46 mw/MHz	1.52 mw/MHz

Lowest Output Power: 1.4 mw/MHz Highest Output Power: 1.8 mw/MHz

Nominal Output Power: 2.29 mw/MHz

Deviation In Output Power: -39.2% to -20.8%

EIRP

Highest Output Power: 1.81 mw/MHz

Highest Output Power: 2.58 dBm/MHz

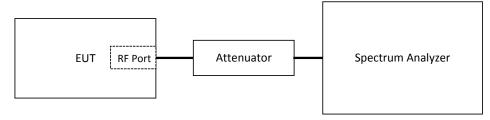
Antenna Gain: 0.00 dBi

EIRP 2.58 dBm/MHz

Page 44 of 48 Aug 16 2009

Elliott

Radio Test Data - Spurious Emissions


All 2022 Company	
Client: Summit Data Communications	Job Number: J76040
Model: SDC-MCF10G	T-Log Number: T76236
Model. SDC-MCF10G	Account Manager: Christine Krebil
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Ron Seide

RADIO EQUIPMENT USED FOR 2.4 GHz BAND WIDE-BAND LOW-POWER DATA COMMUNICATIONS SYSTEM (Radio station using 2400 - 2483.5 MHz and 2471 - 2497 MHz)

Frequency Error

Test Performed	Mode	Requirement	Measurement	Result
Secondary Radiated Emissions		30-1000MHz: 4nW or less	All signals more than 10dB	Door
(Receiver Spurious Emissions)	-	>1000MHz: 20nW or less	below the limit	Pass

Test Configuration

Test Environment

Temperature: 15-30 °C Rel. Humidity: 20-75 % Pressure: 86-106 kPa

Secondary Radiated Emissions

Date of Test: 7/24/2009 0:00 Test Engineer: Mark Hill Test Location: ENV Chamber

Test Requirements							
	Limit						
Frequency Range (MHz)	Single	Chain	2x2 MIMO, per Chain		3x3 MIMO, per Chai		
	nW	dBm/MHz	uW/MHz	dBm/MHz	uW/MHz	dBm/MHz	
30 - 1000	4.0	-54.0	2.0	-57.0	1.3	-58.8	
1000 - 8000	20.0	-47.0	10.0	-50.0	6.7	-51.8	

Measurement Summary - Emission with the least margin from all measurements

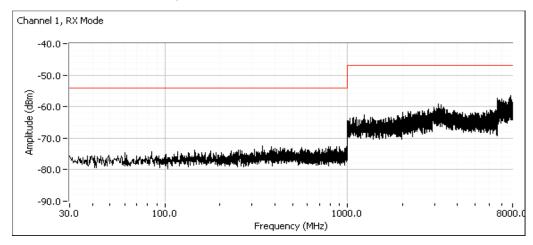
Frequency	Level	Antenna	Limit	Margin	Detector	Comments			
MHz	nW	Port	nW	dB			Voltage	Channel	
30 - 1000	0.04	Main	4.0	-20.0	Peak	Highest level below 1GHz	3.3	-	
1000 - 8000	0.63	Main	20.0	-15.0	Peak	Highest level above 1GHz	3.3	-	

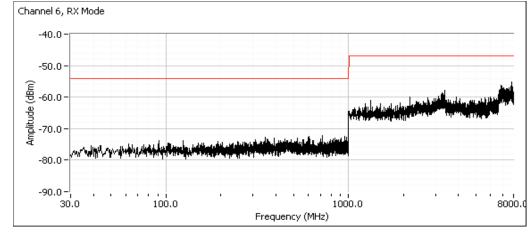
Page 45 of 48 Aug 16 2009

	Elliott An AZAS *company	Radio Test Data - Spurious Emissions				
Client:	Summit Data Communications		Job Number:	J76040		
Model:	SDC-MCF10G		T-Log Number:	T76236		
	SDC-MCF 10G		Account Manager:	Christine Krebil		

Contact: Ron Seide

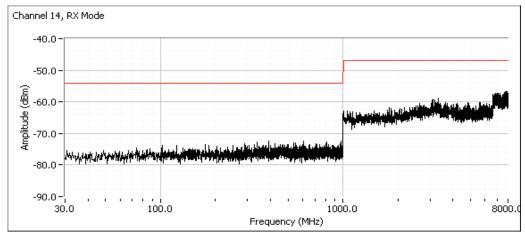
Preliminary Measurements:


Standard: Japanese Radio Law - Item 19 of Article 12


Instrument Settings: RB and VB as detailed below, Positive peak detector and maximum hold for a minimum of 10 sweeps, but until the spectrum displayed becomes stable and no new signals are observed.

Sweep Settings

Frequen	cy (MHz)	Bandwic	lth (MHz)	Cwaan Tima	
Start	Stop	RB	VB Sweep Time		
30	1000	0.1	0.1	AUTO ms	
1000	8000	1	1	AUTO ms	


Broadband plots from 30MHz to 12.5GHz for channels 1, 6 and 13 and 14

Page 46 of 48 Aug 16 2009

Radio Test Data - Spurious Emissions Job Number: J76040 Client: Summit Data Communications T-Log Number: T76236 Model: SDC-MCF10G Account Manager: Christine Krebil Standard: Japanese Radio Law - Item 19 of Article 12 Contact: Ron Seide Channel 13, RX Mode -40.0 -50.0 -60.0 90.0 -70.0 -90.0 8000.0 30.0 100.0 1000.0 Frequency (MHz)

All signals were below a level of -74dBm for the frequency range 30 - 1000 MHz and below -62dBm for the frequency range of 1 - 8 GHz. These levels are 15dB or more the limit.

Final (Zero-Span) measurement

Final Measurements :

Instrument Settings: RB=VB=100kHz (below 1GHz) or RB=VB=1MHz (above 1GHz), Zero Span (Span = 0Hz), sample detector, single sweep and sweep time set to auto.

As there were no emissions above the limit during the preliminary (peak) scan, no final measurements were required

Page 47 of 48 Aug 16 2009

Ellio1	ompany.	Test Ed	quipme	nt Used	
Client: Summit Data Commu	unications	Job Number:	J76040		
Model: SDC-MCF10G		T-Log Number:	T-Log Number: T76236		
Model. SDC-MCF10G		Account Manager	Account Manager: Christine Krebil		
Standard: Japanese Radio L	aw - Item 19 of Article 12	Contact	Ron Seide		
Manufacturer Hewlett Packard	<u>Description</u> EMC Spectrum Analyzer, 9 KHz-26.5 GHz	Model # 8593EM	Asset # 1141	<u>Cal Due</u> 29-Dec-09	
Fluke	Mulitmeter, True RMS	175	1447	18-Jun-10	
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1786	28-Jan-10	
Rohde & Schwarz	Power Sensor, 1 nW-20 mW, 10 MHz-18 GHz, 50ohms	NRV-Z1	2114	18-Sep-09	
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	30-Dec-09	
Rohde & Schwarz	Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms	NRV-Z51	2152	02-Mar-10	

Page 48 of 48 Aug 11 2009